31 research outputs found

    Quasi-intermittency of waves and their complexity in modulated dielectric medium

    Get PDF
    A correlation between the Hurst's index of an electromagnetic signal and its complexity in time-varying medium is shown

    Dynamical frustration of protein's environment at the nanoseconds time scale

    Get PDF
    A 21-residue peptide in explicit water has been simulated using classical molecular dynamics. The system's trajectory has been analysed with a novel approach that quantifies the process of how atom's environment trajectories are explored. The approach is based on the measure of Statistical Complexity that extracts complete dynamical information from the signal. The introduced characteristic quantifies the system's dynamics at the nanoseconds time scale. It has been found that the peptide exhibits nanoseconds long periods that significantly differ in the rates of the exploration of the dynamically allowed configurations of the environment. During these periods the rates remain the same but different from other periods and from the rate for water. Periods of dynamical frustration are detected when only limited routes in the space of possible trajectories of the surrounding atoms are realised

    Wave chaotic behaviour generated by linear systems

    Get PDF
    It is shown that regimes with dynamical chaos are inherent not only to nonlinear system but they can be generated by initially linear systems and the requirements for chaotic dynamics and characteristics need further elaboration. Three simplest physical models are considered as examples. In the first, dynamic chaos in the interaction of three linear oscillators is investigated. Analogous process is shown in the second model of electromagnetic wave scattering in a double periodical inhomogeneous medium occupying half-space. The third model is a linear parametric problem for the electromagnetic field in homogeneous dielectric medium which permittivity is modulated in time

    Equation of State for Water in the Small Compressibility Region

    Get PDF
    The equation of state for dense fluids has been derived within the framework of the Sutherland and Katz potential models. The equation quantitatively agrees with experimental data on the isothermal compression of water under extrapolation into the high pressure region. It establishes an explicit relationship between the thermodynamic experimental data and the effective parameters of the molecular potential

    Identification of metastable states in peptide's dynamics

    Get PDF
    A recently developed spectral method for identifying metastable states in Markov chains is used to analyse the conformational dynamics of a four residue peptide Valine-Proline-Alanine-Leucine. We compare our results to empirically defined conformational states and show that the found metastable states correctly reproduce the conformational dynamics of the system

    The effect of water dynamics on conformation changes of albumin in pre-denaturation state:photon correlation spectroscopy and simulation

    Get PDF
    Water is essential for protein three-dimensional structure, conformational dynamics, and activity. Human serum albumin (HSA) is one of major blood plasma proteins, and its functioning is fundamentally determined by the dynamics of surrounding water. The goal of this study is to link the conformational dynamics of albumin to the thermal motions in water taking place in the physiological temperature range. We report the results of photon correlation spectroscopy and molecular dynamics simulations of HSA in aqueous solution. The experimental data processing produced the temperature dependence of the HSA hydrodynamic radius and its zeta potential. Molecular dynamics reproduced the results of experiments and revealed changes in the secondary structure caused by the destruction of hydrogen bonds in the macromolecule's globule

    All-atom molecular dynamics simulations of entire virus capsid reveal the role of ion distribution in capsidā€™s stability

    Get PDF
    Present experimental methods do not have sufficient resolution to investigate all processes in virus particles at atomistic details. We report the results of molecular dynamics simulations and analyze the connection between the number of ions inside an empty capsid of PCV2 virus and its stability. We compare the crystallographic structures of the capsids with unresolved N-termini and without them in realistic conditions (room temperature and aqueous solution) and show that the structure is preserved. We find that the chloride ions play a key role in the stability of the capsid. A low number of chloride ions results in loss of the native icosahedral symmetry, while an optimal number of chloride ions create a neutralizing layer next to the positively charged inner surface of the capsid. Understanding the dependence of the capsid stability on the distribution of the ions will help clarify the details of the viral life cycle that is ultimately connected to the role of packaged viral genome inside the capsid

    Reductions of Hidden Information Sources

    Full text link
    In all but special circumstances, measurements of time-dependent processes reflect internal structures and correlations only indirectly. Building predictive models of such hidden information sources requires discovering, in some way, the internal states and mechanisms. Unfortunately, there are often many possible models that are observationally equivalent. Here we show that the situation is not as arbitrary as one would think. We show that generators of hidden stochastic processes can be reduced to a minimal form and compare this reduced representation to that provided by computational mechanics--the epsilon-machine. On the way to developing deeper, measure-theoretic foundations for the latter, we introduce a new two-step reduction process. The first step (internal-event reduction) produces the smallest observationally equivalent sigma-algebra and the second (internal-state reduction) removes sigma-algebra components that are redundant for optimal prediction. For several classes of stochastic dynamical systems these reductions produce representations that are equivalent to epsilon-machines.Comment: 12 pages, 4 figures; 30 citations; Updates at http://www.santafe.edu/~cm

    Water-peptide dynamics during conformational transitions

    Get PDF
    Transitions between metastable conformations of a dipeptide are investigated using classical molecular dynamics simulation with explicit water molecules. The distribution of the surrounding water at different moments before the transitions and the dynamical correlations of water with the peptide's configurational motions indicate that the water molecules represent an integral part of the molecular system during the conformational changes, in contrast to the metastable periods when water and peptide dynamics are essentially decoupled

    Multiscale molecular dynamics/hydrodynamics implementation of two dimensional ā€œMercedes Benzā€ water model

    Get PDF
    A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed
    corecore